Subspace Detection from Structured Union of Subspaces via Linear Sampling

نویسندگان

  • Thakshila Wimalajeewa
  • Yonina C. Eldar
  • Pramod K. Varshney
چکیده

Lower dimensional signal representation schemes frequently assume that the signal of interest lies in a single vector space. In the context of the recently developed theory of compressive sensing (CS), it is often assumed that the signal of interest is sparse in an orthonormal basis. However, in many practical applications, this requirement may be too restrictive. A generalization of the standard sparsity assumption is that the signal lies in a union of subspaces. Recovery of such signals from a small number of samples has been studied recently in several works. Here, we consider the problem of subspace detection in which our goal is to identify the subspace (from the union) in which the signal lies from a small number of samples, in the presence of noise. More specifically, we derive performance bounds and conditions under which reliable subspace detection is guaranteed using maximum likelihood (ML) detection. We begin by treating general unions and then specify the results to the special case in which the subspaces have structure leading to block sparsity. In our analysis, we treat both general sampling operators and random sampling matrices. With general unions, we show that under certain conditions, the number of measurements required for reliable subspace detection in the presence of noise via ML is less than that implied using the restricted isometry property which guarantees signal recovery. In the special case of block sparse signals, we quantify the gain achievable over standard sparsity in subspace detection. Our results also strengthen existing results on sparsity pattern recovery in the presence of noise under the standard sparsity model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling in a Union of Frame Generated Subspaces

A new paradigm in sampling theory has been developed recently by Lu and Do. In this new approach the classical linear model is replaced by a non-linear, but structured model consisting of a union of subspaces. This is the natural approach for the new theory of compressed sampling, representation of sparse signals and signals with finite rate of innovation. In this article we extend the theory o...

متن کامل

Robust and Efficient Subspace Segmentation via Least Squares Regression

This paper studies the subspace segmentation problem which aims to segment data drawn from a union of multiple linear subspaces. Recent works by using sparse representation, low rank representation and their extensions attract much attention. If the subspaces from which the data drawn are independent or orthogonal, they are able to obtain a block diagonal affinity matrix, which usually leads to...

متن کامل

Optimal Non-linear Models

This paper is a survey about recent results on sparse representations and optimal models in different settings. Given a set of functions, we show that there exists an optimal collection of subspaces minimizing the sum of the square of the distances between each function and its closest subspace in the collection. Further, this collection of subspaces gives the best sparse representation for the...

متن کامل

A Certain Class of Character Module Homomorphisms on Normed Algebras

For two normed algebras $A$ and $B$ with the character space   $bigtriangleup(B)neq emptyset$  and a left $B-$module $X,$  a certain class of bounded linear maps from $A$ into $X$ is introduced. We set $CMH_B(A, X)$  as the set of all non-zero $B-$character module homomorphisms from $A$ into $X$. In the case where $bigtriangleup(B)=lbrace varphirbrace$ then $CMH_B(A, X)bigcup lbrace 0rbrace$ is...

متن کامل

Fast recovery from a union of subspaces

We address the problem of recovering a high-dimensional but structured vector from linear observations in a general setting where the vector can come from an arbitrary union of subspaces. This setup includes well-studied problems such as compressive sensing and low-rank matrix recovery. We show how to design more efficient algorithms for the union-of-subspace recovery problem by using approxima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1304.6281  شماره 

صفحات  -

تاریخ انتشار 2013